Advanced Ecology 470 R tutorials; UVic Jan 2015

Created by JPWR, 28-Jan-2015

Data manipulation + statistics - working with data frames

1. Import a dataframe and explore its structure

We're going to work with some wolf and moose population data collected from Isle Royale (Michigan)
(http://www.isleroyalewolf.org/data/data/home.html).

EITHER load your data using the full file path name
isle dat<-read.csv(file="/Users/james/Desktop/LearnR/IsleRoyale Data.csv")

OR set your working directory (best practice) and call the file directly. With this approach, any files you save will go straight to
the 'learnR' folder.

setwd("/Users/james/Desktop/LearnR/")

isle dat<-read.csv("IsleRoyale_Data.csv")

Now isle_dat is loaded into your workspace and we can begin to explore the dataset, make plots, run analyses etc. Let's have
a look...

names (isle dat) ## what are the names of the variables in the data frame?
head(isle dat) ## what are the first 6 rows of the data frame?

tail(isle dat) ## what are the bottom 6 rows of the data frame?

dim(isle dat) ## what are the dimensions of the data frame?

str(isle dat) ## what's the structure of the data frame?

Data frames are used to store data tables. Simply, they are a combination of rows and columns that you might view in an
excel spreadsheet. We can select different combinations of rows and columns from a data frame using square brackets.

isle dat[1,1] ### print the first row and first column value
isle dat[1:10, 1] ### print the first 10 rows of the first column

So we call rows then columns. This is standard mathematic notation, so we would use the same description to work with a
matrix object in R.

We can also call whole columns by name using the $ symbol.

isle_dat$year

isle_dat$kill rate
2. Basic statistics in R
R has many basic functions that you can call on. Let's try a few..

mean(isle dat$wolf pop size) ### Calculate the mean of wolf population size
sd(isle_dat$wolf pop size) ### Calculate the standard deviation of wolf population size
var(isle dat$wolf pop size) ### Calculate the variance of wolf population size

max(isle dat$wolf pop size) ### Calculate the maximum value of wolf population size

summary(isle_dat$wolf pop size) ### All the summary statistics at once

What if we only want to analyse a subset of the data frame?

subset (isle dat, year==1964) ### look at all values for year = 1964

We use two equal symbols to make a logical statement, and R selects any row in which "year" is equal to 1964.

Let's try year = 1964.

subset (isle dat, year=1964) ### Error - the full dataset is returned.

In R, a single = sign is equivalent to '<-'. This tells R to assign a name to a value, a function, or an object. A double == sign is
equivalent to a logical statement - 'Is X the same as Y, TRUE or FALSE?'.

We can also build up multiple logical statements.
subset (isle dat, year > 1964 & year < 1974) ### Return years 1965 - 1973
3. Dealing with NAs

Dataframes often have NA values - these are usually variables that were not recorded over all of the sampling period. R stores
these as 'Inf', "NaN", or "NA". You should always check your dataframe for NA values.

var(isle dat$kill rate) ### Variance of kill rate is NA.
is.na(isle_dat$kill rate) ### Earliest years have no kill rate data.

Here we remove the NA values to calculate variance. Note that the NA values remain in the dataframe, but the variance
function omits them.

var(isle dat$kill rate, na.rm=TRUE) ## Calculate variance without NAs using na.rm = TRUE

var (na.omit(isle dat$kill rate)) ## Calculate variance without NAs using na.omit

You might want to remove all the NA values from your data - though be careful, because this will throw out useful data points
as well. Here, ! is equivalent to "without", and is.na() identifies the NA values with TRUE or FALSE

isle dat clean<-isle dat[!is.na(isle dat$kill rate),] ### create new object without NAs.
dim(isle dat)
dim(isle dat clean) # dropped 12 rows

4. Storing new dataframes

We can break up dataframes and save a subset for a separate analysis, or run an analysis and store the results. Remember to
name your objects appropriately (a short-hand description of the object is usually best).

isle dat 70s<-subset(isle dat, year >= 1970 & year < 1980)

There are several useful functions that aggregate statistics across variables or logical statements. To get the mean of every
column in a dataframe we can use 'apply'.

apply(isle dat, 2, mean) ## print mean of every column (specified by the 2, rows are specified by a 1)

mean pop stats<-apply(isle dat, 2, mean)

5. Exporting results

We used read.csv to bring our data into R. To get data out, we just use write.csv (remember - no spaces in your filenames!)
write.csv(mean pop stats, file="mean popvars isledat.csv")

If you used setwd() at the start of your script, a new csv file should have appeared in your working directory. If you didn't use
setwd(), the csv file has probably disappeared into your computer hard drive. Use getwd() to check where it ended up...

getwd() ## csv file wasn't created where I thought it would be. Where is it?

R can export many different types of file. Check http://www.statmethods.net/input/exportingdata.html for some examples.

6. Linear regression in R

How do we run a linear regression in R?. We need to adopt formula notation to use the command Im().

modl<-lm(wolf pop size ~ kill rate, isle dat) # fit a linear model and save to workspace as modl
summary (modl) # model output
coef (modl) # model coefficient estimates

Remember to check the assumptions of a linear model. You can use normality tests, build residual plots, and extract fitted

model values in R. For more information on linear models, look here:

e http://www.r-tutor.com/elementary-statistics/simple-linear-regression

e http://blog.yhathqg.com/posts/r-Im-summary.htmi

