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MICROCOSM EXPERIMENTS HAVE LIMITED RELEVANCE FOR 
COMMUNITY AND ECOSYSTEM ECOLOGY' 

STEPHEN R. CARPENTER 
Center for Limnology, University of Wisconsin, Madison, Wisconsin 53706 USA 

INTRODUCTION 

Advantages of microcosm experiments are extolled 
by contributions to this Special Feature and other recent 
publications (Threlkeld 1993, Kareiva 1994). Some of 
my own work has benefitted from the speed, replica- 
bility, statistical power, and mechanistic insights at- 
tainable using microcosms, so I am not entirely op- 
posed to the approach. Microcosms have become an 
important tool for some ecologists. However, micro- 
cosm experiments also have serious limitations. With- 
out the context of appropriately scaled field studies, 

microcosm experiments become irrelevant and diver- 
sionary. 

Why are ecologists tempted to build programs 
around microcosm experiments? In addition to the ba- 
sic-science insights they provide, microcosms have 
other, more pragmatic advantages. Microcosms provide 
rapid results to meet publication goals for career de- 
velopment. Costs can be modest, so microcosm ex- 
periments are attractive for theses. Laboratory exper- 
iments keep ecologists on campus, where administra- 
tors would like them to be, instead of traveling to re- 
mote field sites. These advantages are important in the 
competition between environmental sciences and mo- 
lecular biology that drives many biology departments. I For reprints of this Special Feature, see footnote 1, p. 663. 
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Microcosms are easily justified to molecular colleagues 
in arguments for ecological appointments. But a mo- 
lecular biologist who isolates ribosomes is working on 
ribosomes; an ecologist who isolates organisms in bot- 
tles may not be working on communities and ecosys- 
tems in any relevant sense. The approach works in 
molecular biology for a number of reasons: there is 
general agreement about the human health goals that 
rationalize most of the funding; statistical issues are 
few and often simple; the scientific community focuses 
on only a few species; and relatively rapid replicated 
study is possible at several levels (including organisms, 
the ultimate context for the science), so context is readi- 
ly retained. These features are not shared by community 
and ecosystem ecology. Emulation of molecular biol- 
ogy by ecologists is "cargo-cult science" (Feynman 
1985:308-317) with a serious cost: loss of relevance. 

ECOLOGICAL EXPERIMENTS ARE 

POSSIBLE AT MANY SCALES 

Ecological systems do not have a single character- 
istic scale. Insightful research is likely to consider a 
range of different scales, including microcosms (Levin 
1992). But in comparing results across scales, one must 
consider the extent to which microcosms represent eco- 
logical phenomena. The size and duration of micro- 
cosm experiments exclude or distort important features 
of communities and ecosystems. Some processes and 
organisms are too large, wide ranging, or slow to in- 
clude in microcosm experiments. Examples are tur- 
bulence, migration, wolves, salmon, and trees. Other 
processes and organisms change so rapidly that they 
can reach unrealistic rates or population densities in 
the course of microcosm experiments. Examples are 
microbial metabolism, nutrient regeneration, phyto- 
plankton production, bacterial biomass, and plankton 
communities. 

Limnology provides many examples of disconnec- 
tion between microcosms and natural systems. Con- 
tainer size and experimental duration are known to af- 
fect results (Gerhart and Likens 1975, Stephenson et 
al. 1984, Bloesch et al.1988). In one study, increases 
or decreases by phytoplankton during whole-lake graz- 
er manipulations were correctly predicted for only a 
third of the taxa tested in microcosm experiments (Car- 
penter and Kitchell 1988). During the eutrophication 
controversy of the 1960s and 1970s, microcosm ex- 
periments caused the significance of inorganic carbon 
limitation in eutrophication to be overstated (Schindler 
et al. 1972). Phosphorus control policies were delayed 
until whole-lake experiments, comparative studies, and 
case studies showed convincingly that phosphorus 
loading caused eutrophication (Vollenweider 1976, 
Schindler 1977, Edmondson 1991). Currently there is 
controversy about the interactions of phosphorus load- 

ing and food web structure in controlling phytoplank- 
ton. Fish predation and phosphorus cycling occur at 
whole-lake scales and are difficult to mimic in micro- 
cosms. A recent review found confusion and contra- 
diction among 44 studies; 22 of these were 
experimental but only four experiments were conduct- 
ed at the scale of lakes (DeMelo et al. 1992:tables 2 
and 3). The logical conclusion is that microcosms and 
non-manipulative studies have not yielded consistent 
results, and whole-lake manipulations are rare. The 
scale of research now emphasizes deliberate manipu- 
lations of whole ecosystems (Benndorf 1990, McQueen 
1990, Carpenter and Kitchell 1993, Scheffer et al. 1993, 
Reynolds 1994). 

These aquatic examples primarily illustrate problems 
of inappropriate spatial scale. Analogous problems oc- 
cur when duration of experiments is too short. Overly 
brief experiments have proven misleading because of 
failures to account for transient dynamics, indirect ef- 
fects, environmental variability, multiple stable equi- 
libria, and site history (Tilman 1989). 

Examples of experiments that were eventually rec- 
ognized as misleading can be cited for many fields, at 
many scales. Microcosms are not the only research tool 
susceptible to misinterpretation. But microcosms are a 
very indirect way of learning about ecology, and there 
is considerable risk of results that are misleading about 
natural processes at relevant scales. Studies of appro- 
priate scale and duration provide crucial checks for 
reliability of microcosm results. 

Can we predict where microcosm experiments are 
likely to be useful? Successful microcosm experiments 
are prompted and verified by results of larger field pro- 
grams (Frost et al. 1988). Typical case studies of large, 
unique ecological systems synthesize evidence from a 
variety of sources and approaches, which can include 
microcosms (Shrader-Frechette and McCoy 1993). For 
example, microcosms can be used to eliminate hy- 
pothesized mechanisms, compare alternative mecha- 
nisms, or estimate rates. Context and relevance, how- 
ever, derive from appropriately scaled field studies. 

Fortunately, experimental scales can be broadened 
in space and extended in time to include large, slow 
phenomena (Likens 1985, Tilman 1989, Levin 1992). 
Large-scale, long-term experiments can yield infor- 
mative contrasts that test hypotheses and quantify ef- 
fects at multiple scales simultaneously (Carpenter 
1988). Statistical issues in the design of large-scale 
experiments require careful consideration; this active 
area of research is beyond the scope of this paper (but 
see Stewart-Oaten et al. 1986, 1992, Walters 1986, Car- 
penter 1988, 1990, Walters and Holling 1990, McAl- 
lister and Peterman 1992, Carpenter and Kitchell 1993, 
Scheiner and Gurevitch 1993). Inference in large-scale 
field studies depends on long-term databases (Likens 

This content downloaded from 142.104.175.121 on Sun, 24 Nov 2013 17:35:56 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


April 1996 ROLES OF EXPERIMENTAL MICROCOSMS 679 

1989, Risser 1991), cross-system comparisons (Cole et 
al. 1991), and big manipulations (Likens 1985, Walters 
1986, Carpenter 1990, Lee 1993). Such long-term and 
spatially extensive studies establish the context for eco- 
logical science. Misleading inferences are greatly re- 
duced by scaling research tools to the spatial and tem- 
poral extent of ecological processes. 

SCALES OF ENVIRONMENTAL PROBLEM 

SOLVING 

Ecology has become a significant applied science 
with a responsibility to the society that supports it (Lik- 
ens 1992, Lee 1993, Shrader-Frechette and McCoy 
1993). The contribution of ecology to environmental 
problem solving depends heavily on appropriately 
scaled field studies. Examples of relevant scales are 
species ranges in conservation biology, watersheds in 
ecosystem studies, and global cycles in biogeochem- 
istry. Academic ecologists may avoid these scales in 
order to attain the rigorous experimental control pos- 
sible in microcosms. However, great benefits can arise 
when academic ecologists become involved in applied 
studies at relevant scales. Many innovations and in- 
sights necessary for effective work at the scale of man- 
agement have come, and must continue to come, from 
academia. As noted in a recent evaluation of a part- 
nership between a university and a management agency 
(Kitchell 1992:543), "Academics have the freedom to 
have lots of ideas. Being around and involved when 
these are developing can yield tremendous benefits." 
Basic ecology benefits also, as applied problems stim- 
ulate new questions in the same way that clinical issues 
motivate biomedical research (Slobodkin 1988). 

Most of the crucial questions of applied ecology are 
not open to attack by microcosms (Carpenter 1988, Lee 
1993, Shrader-Frechette and McCoy 1993). Tests of 
fish management policies (Hilborn 1992, McAllister 
and Peterman 1992), biomanipulation (Kitchell 1992, 
Carpenter and Kitchell 1993), and ecosystem manage- 
ment of the Columbia River watershed (Lee 1993) are 
a few examples. Field studies at the scale of the en- 
vironmental problem are essential when phenomena of 
interest cannot be bottled (Carpenter 1988, Lee 1993) 
and when managers or stakeholders are not convinced 
by small-scale trials (Carpenter and Kitchell 1992, Lee 
1993). The statistical advantages of microcosms (ob- 
tained through replication and ease of repetition) do 
not offset the problems of scale. In management, a 50: 
50 chance of success can be more persuasive (relative 
to alternative options with higher risk) than scientific 
certainty at the arbitrary 95% level (Walters 1986, Lee 
1993). Decision makers may not have time to delay 
until statistical significance is high, because resources 
and political opportunities will disappear while they 
wait (Lee 1993). Learning by doing is a hallmark of 

successful environmental management (Holling 1978, 
Walters and Holling 1991, Lee 1993). 

A FEELING FOR THE ECOSYSTEM 

Who will train the ecologists needed for field sci- 
ence? It is irresponsible for academic ecology to pro- 
duce larval microcosmologists by canalizing graduate 
students into careers of small-scale experimentation. 
There is cognitive danger that the microcosm (rather 
than the ecological system) will become the object of 
study, leading to needless confusion as results are ov- 
erinterpreted and overextended. As ecology becomes 
more and more a science done indoors by urbanites, 
there is significant risk of losing our sense of context. 
Already there is a shortage of students and postdoctoral 
students who have the practical knowledge and natural- 
history background to function outdoors. Graduate cur- 
ricula in ecology could fill gaps in practical knowledge 
through courses in hardware, lumberyards, construc- 
tion, boat and motor maintenance, field methods, and 
so forth. But graduates who lack a deep appreciation 
of natural history and real ecosystems, which can come 
from extensive field experience but not from the cam- 
pus, have deficient educations. Without the training en- 
vironment provided by field research, there is likely to 
be a shortage of scientists capable of mounting insight- 
ful field programs.Those of us in academia should work 
to fill that need. 

The rich context of ecology, our fundamental un- 
derstanding of phenomena at multiple scales, and the 
significance of ecology to society depend on appro- 
priately scaled field studies. While microcosm exper- 
iments have many advantages, their primary role is 
supportive and heuristic. Ecologists should use all 
available tools to advance the analysis of communities 
and ecosystems at the scales of natural processes, man- 
agement, and societal concern. 
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